College of Engineering

	CE 520 Advanced Hydraulics		
Credit and Contact hours	3/3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Required for a MSCE degree		
Course Description	Steady pipe flow theory and computations. Design and analyses of sewer network system. Design and analysis of transmission lines. Design and analysis of distribution networks. Unsteady flow; Gradually varied unsteady flow and Rapidly varied unsteady flow, Transient flow equations and methods of solution.		
Prerequisites or Co-requisites	None		
Course Learning Outcomes	Students completing this course successfully will be able to		
	Course Learning Outcomes	Related Program Outcomes	
	CLO1: Explain and recognize characteristics of pipe flow in pipelines, water distribution system, and sewer networks	K1	
	CLO2: Use math and software to analyze and design hydraulics systems with Civil Engineering applications.	S1	
	CLO3: Compare, evaluate and discuss appropriate qualitative and quantitative methods commonly used in the literature of hydraulics (e.g. branching system, analytical solutions for water hammering, numerical models of water distribution, analytical solutions for pipelines).	C1	
Student Outcomes related to this Course	K1 . Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems.		
	S1 . Provide solution for complex and real-life engineering problems through critical thinking and using modern engineering tools and identify its impact on social and ethical issues.		

	C1. Criticize and discuss scient Engineering issues with his independently, or as a team	gh level of ethics and proficie		
Topics Covered	List	of Topics	Related CLOs	
	1. Introduction		CLO1	
	2. Sewer network system		CL01	
	3. Water distribution system	n	CL01	
	4. Analyze hydraulics syste	ems	CLO2	
	5. Design hydraulics system applications	ns with Civil Engineering	CLO2	
	6. Branching flow in pipes		CLO3	
	7. Water hammering in pipe	es	CLO3	
	8. Pipeline transmission sys	stem	CLO3	
Textbook(s) and Other Required Material	 Mays, L. W Water Resources Engineering (2nd ed.). Wiley.Todd D.K., Ground Water Hydrology, John Wiley and Sons, 2000. Haestad Methods, Donald V. Chase, Dragan A. Savic, Thomas M. Walski., Water Distribution Modeling, Haestad; 1st edition (April 1, 2001). 			
	• Nazih K. Shammas, Water S edition, 2011.	upply and Wastewater Remov	val, Wiley., Third	
Grading System	Assignments	20%		
	Project Work	20 %		
	Midterm Exam	20%		
	Final Exam	40%		
Instructors	Dr. Osama Saad A Al Gahtani /Dr. Faisal AlFaisal E-mail: oalgahtani@ksu.edu.sa Office 2A61			
Date of Review	February, 2021			